Indian Statistical Institute Semestral Examination 2008-2009

M.Math II year Number Theory Max Marks 100

Date: 05-12-2008

Duration 3 hours

1. (a) For an odd prime p, let $\mathbb{F}_p = Z/pZ$ in the field of order p. Show that, for $u \in \mathbb{F}_p$, we have

$$\sum_{x \in \mathbb{F}_p} \left(\frac{x(u-x)}{p} \right) = \begin{cases} (-1)^{\frac{p-1}{2}} (p-1) & \text{if } u = 0 \\ (-1)^{\frac{p+1}{2}} & \text{otherwise.} \end{cases}$$

- (b) If p, q are two distinct odd primes, let ω be a primitive pth root of unity in the algebraic closure of \mathbb{F}_q , and define the Gauss sum S by $S = \sum_{x \in \mathbb{F}_p} \left(\frac{x}{p}\right) \omega^x$. Use part (a) to show that $S^2 = (-1)^{\frac{p-1}{2}} p$.
- (c) The map $y \mapsto y^q$ is an automorphism of the algebraic closure of \mathbb{F}_q . Use this fact to show that $S^q = (\frac{q}{p})S$.
- (d) Use the results from (b) and (c) to conclude that $(\frac{p}{q})(\frac{q}{p})=(-1)^{(p-1)(q-1)/4}$. [30]
- 2. (a) Let $p \equiv 1 \pmod{4}$ be a prime. Define $X = \{(a,b,c) \in \mathbb{N}^3 : a^2 + 4bc = p\}$. Show that X is a non-empty finite set. Zagier defined an involution $f: X \to X$ which has a unique fixed point x_0 . Using this fact, show that p is a sum of two squares.
 - (b) Define $g: X \to X$ by g(a, b, c) = (a, c, b). Let $h = f \circ g$. Show that the h-orbit containing x_0 contains a unique fixed point y_0 of g. [20]
- 3. Define the ring of Gaussian integers and find all the units of this ring. Show that every non-zero element of this ring has a unique factorization into prime elements modulo units. [15]
- 4. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on a field \mathbb{F} . Show that the following statements are equivalent: (a) $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent norms
 - (b) $\|\cdot\|_1$ and $\|\cdot\|_2$ define the same open unit ball
 - (c) there is constant $\alpha > 0$ such that $||x||_2 = ||x||_1^{\alpha}$ for all $x \in \mathbb{F}$. [20]
- 5. (a) Show that every *p*-adic integer x has a unique expansion $x = \sum_{n=0}^{\infty} x_n p^n$ where $0 \le x_n < p$ for each n. Find this expansion for x = -1.
 - (b) Show that this expansion of x is eventually periodic if and only if x is a rational number. [15]
 - (Hint for part (b). Observe that if N is a natural number, then there are $m, n \geq 0$ such that N divides $p^m(p^n 1)$.)